JOURNAL OF APPROXIMATION THEORY 2, 136-151 (1969)

Duality in Nonlinear Approximation*

WERNER KRABS

Institut fiir Angewandte Mathematik der Universitit, Hamburg, Germany

1. INTRODUCTION

We are mainly concerned with the problem of characterizing the distance
d (W) between a fixed point x and a nonempty subset W of a real normed
linear space X. We intend to develop a purely geometric concept by which
d (W) can be estimated from below and even obtained as the maximum of
certain lower bounds.

In Section 2 we start with the consideration of families & of half spaces R
in X such that

w< U R and x¢ U R
Re# ReZ
By 5 we denote the family of corresponding hyperplanes H. Itis geometrically
evident that the infimum of all the distances d (H) from x to H € 3£ is a lower
bound for d (W). This is proved as Lemma 2.2.

The main result of Section 2 is a duality theorem which states that d (W)
is the maximum of all such infima. This generalizes the well-known fact that,
if Wis convex, d,(W) is the maximum of all the distances d,(H) where His a
hyperplane separating x and W (Theorem 2.5).

In Section 3 we introduce supporting systems and strong supporting systems
for W. The latter play the major role since they serve as an important tool in
the characterization of projection points Ww e W, i.e., points Ww such that
W — x| = d(W).

A strong supporting system for W is a family # of half spaces R such that

W< U R and S= N {HN W}
ReZ Hes¥

is nonempty, where 3% is the family of corresponding hyperplanes. The
elements of S are called supporting points. For instance, if W is convex, each
supporting hyperplane defines a strong supporting system which consists of
only one half space.

In Theorem 3.3 we obtain a well-known sufficient condition for a point
W e W to be a projection point. If W is convex then a restricted form of this

* This research was supported by the Air Force Office of Scientific Research under grant
AF-AFOSR-937-67.
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condition is also necessary. The formulation we give makes nse of supporting
systems and thus yields a purely geometric viewpoint.

We conclude Section 3 with the consideration of the following situation
which generalizes several special cases: Let ¥ be another real normed linear
space and 4 a nonempty open subset of Y. We consider a Fréchet-differentiable
mapping F: A — X and put W= F(4). We have investigated this case in [/7]
and we give a short review of the results at the end of Section 3.

At the beginning of Section 4 we present an algebraic version of Lemma 2.2.
Then we consider the special case of the Chebychev approximation problem
where X is the vector space C(M) of all continuous, real valued functions on
a compact Hausdorff space M with the maximum norin. The concept of
H-setsin M, due to Collatz [2], can be formulated in terms of strong supporting
systems. Furthermore, a result of Collatz concerning lower bounds for
d (W) and a similar one of Meinardus and Schwedt [12] turn out to be speciai
cases of Lemma 2.2. The case W= F(4) where 4 is a nonempty open subset
of the real euclidean n-space and F:4 — C(M) is a Fréchet-differentiable
mapping has been investigated in [10], so that we content ourselves with a
short review of the results. Finally, we treat the case of discrete Lp-approxi-
mation and give a simple method to verify the assumptions of Lemma 2.2 for
the generalized rational approximation problem.

2. A DuALITY THEOREM

We consider a normed linear space X over the reals and denote the norm
by ||-|l. Let X* be the dual space of X, that is, the set of ali continuous linear
functionals L mapping X into the reals. X* becomes a real Banach space if
we define the norm by

I = sup |L(x)
lixi=1
By S* we denote the unit sphere of X*, that is, the set of all L € X'* such that
iiL] = 1. In the following, a half space R of X is always defined by a pair
(L, with L € S* and « real, so that

R={ye X:L(y)= o}

, Le X%,

-
[\
o

We call
H=%{he X:L{(h) =}

the corresponding hyperplane.
LemMa 2.1 [3]. For a given L € S*, let the half space R be defined by (2.1}
and let H be the corresponding hyperplane. Then for each x ¢ R, the disiance
d(H)=inf || — x|

heH
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Jrom x to H is given by
di(H) =L(h — x) = o — L(x)
Jorall he H.

Proof. x ¢ Rimplies x ¢ H. Since H is closed we have d (H) > 0. By assump-
tion the closed ball

K={ye X:|y—x| £ d(H)}

is contained in the half space

{reX:L(y)s «.
This implies
LAy = oz supL(y)=d(H) + L(x)

yek
or
a—L(x)=Lh—x)=2d(H) forallheH.
On the other hand we have for each he H
a— L(x)=L(h— x) < llh — x|,
and therefore
L(h— x) = o — L(x) < d(H).

This completes the proof.

LeEMMA 2.2. Let R be afamily of half spaces and S the family of corresponding
hyperplanes. For a nonempty subset W of X and for an x € X we assume

we U R 2.2)
Re®R
and
x¢ U R. 2.3
ReZ#
Then we have
inf d(H)< d(W)= inf |w—x|. 2.4
Hed weW

Proof. Every R € Z is given by (2.1) for some L € S*. Let £ be the collection
of all these L. (2.2) then implies that for each w € W there exists H € 5# and
L e Z such that

Lw)z L(h) forall he H. 2.5)
(2.3) implies, by Lemma 2.1, that for each Re #
d,(H) = L(h—x) forallhe H,

where H is the corresponding hyperplane and L the corresponding element
of Z.
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Suppose (2.4) is false. Then by the definition of d{W) thereis a w € W such
that
d(H) > W — x| forall He #.

Hence for each H € 5# and the corresponding L € & we have
Lh—w)y=Lth—x)—LW—x)Z L{h—x) — [# — x|
=d(H)—|Ww—x||>0 forallhe H.

This contradicts (2.5). Therefore (2.4) must be true.

Now we assume W to be a nonempty convex subset of Xand xe Xiobea
point not belonging to the closure of W. According to a well-known separation
theorem [9] there is a half space R such that W< Rand x ¢ R. By Lemma 2.2
we therefore have d (H) £ d{W) where H is the corresponding hyperplane.

Lemma 2.3, In addition to the assumptions of Lemma 2.2 we require W< X
to be convex and
d= inf d{H)>0.
HeH
Then there is a half space R such that W< R, x ¢ R and
d< d(H) < d (W),

where H is the corresponding hyperplane.

s
b)
(=)

Proof. By the above separation theorem [9] the closed ball
Ky={yeX:ily—x|=d}
and W can be separated by a hyperplane
H={he X:L(h) =2},
where L € $* and & is a real scalar; i.e.,
WeR={yeX:L(»z& and K,c{yeX:L(»)ga;:
in particular, x ¢ R. This implies
inf L(w) =& = supL(y)=d + L(x),

weW veKa
and applying Lemma 2.1 we conclude
d(W)z inf Lw—x)z2 68— L(x)=d()zd

wew

which completes the proof.

LeEmma 2.4. Let x € X and a nonempty subset W of X be given such that
d (W)= inf |jw— x|} > 0.

weW
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Then there exists a family % of half spaces such that (2.2) and (2.3) hold and
d(H)=d(W) @7
Jor all H of the family 5 of corresponding hyperplanes.

Proof. Put K={y e X:|ly — x| £ d{(W)}. If we choose an arbitrary we W
and define

z=(1—-Nx+ 2w 2.8)
where
_ 4w
w—xI’
then

llz — xll = Alw — xl| = d(W).

Furthermore, there exists a hyperplane supporting K at z [9], which is given
by
H,={he X:L,(h) = L,(2)}

where L, € S*. With no loss of generality we may assume
L(x)<L,(z)=L,h) forallheH,. 2.9

On the other hand, we have

L(w—z)= 1—5\——)‘ Az—x)=0. (2.10)

If we define
-Rz = {y € X:Lz(y) = Lz(z)}

and denote by Z the family of all such half spaces R, where z is defined by
(2.8) and w varies over W, then (2.2) and (2.3) are an immediate consequence
of (2.9) and (2.10). Furthermore, we have

Lz(z) = SuELz(y ) = dx( W) + Lz(x)5
ye
whence by Lemma 2.1
dx(Hz) =L,(z— x) =z d(W).

On the other hand
dx(Hz) = L._,(Z - x) = ”Z - x“ = dx(W)'

This completes the proof.
Lemma 2.2 and 2.3 yield the following
Duavrity THEOREM. If for x € X and a nonempty subset W of X we have

d (W) >0, then
d(W)=max inf d.(H),
A HeXl
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where the maximum is taken over all families Z of half spaces satisfying (2.2}
and (2.3), and € is the family of corresponding hyperplanes.

From now on we assume W to be convex. If for some x X we have
d (W) > 0, then by the Duality Theorem there is a family Z of half spaces
satisfying (2.2) and (2.3) such that

d(W)= inf d(H)>0,
Hedf

where # is the corresponding family of hyperplanes. However, by Lemma 2.3
there exists a half space R such that W< R, x ¢ R, and

d(H) = Jnf d(H)

where H is the corresponding hyperplane.
Using this result and Lemma 2.2 we get

THEOREM 2.5. Let W be a nonempty convex subset of X and assume d{W) >0
for some x € X. Then

d(W)=maxd (H)

where the maximum is taken over all the half spaces R such that W< R, x ¢ R,
and H is the corresponding hyperplane.

This result is well known (compare, for instance, [3], [5], [7], where equiv-
alent results are obtained) and can now be considered as a special case of the
above Duality Theorem.

3. SUPPORTING SYSTEMS AND A SUFFICIENT CONDITION FOR PROJECTION
PoInTs

As in Section 2, we start with a real normed linear space X and consider a
family Z of half spaces R defined by (2.1), where L € &, and .¥ is the corre-
sponding set of linear forms in S*,

DEFINITION. Z is called a supporting system for a nonempty subset ¥ of
X if (2.2) holds and if for all H € # we have
HOW+#gz, {3.13

where 5 is the corresponding family of hyperplanes and @ denotes the
empty set,
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If Z is a supporting system for the nonempty subset W of X and x e X is
such that (2.3) holds then Lemma 2.2 yields a lower bound for the distance

d(W) = inf |lw— x|

between x and W.

LemMa 3.1, Iffor x € X and for a nonempty subset W of X we have d (W) > 0,
then there is a supporting system % for W such that (2.3) is satisfied.

Proof. If in the proof of Lemma 2.4 we substitate the family # = {R,} by
2 ={R,}, where
R.={ye X:L(y) z L.(w)}

and z is given by (2.8), then it is easy to verify that £ satisfies (2.2), (2.3), and
3.1).

DEFINITION. A supporting system Z for the nonempty subset W of X is
called a strong supporting system if

S= N {(HAW)#2, - (3.2)
HeH

where S is the corresponding family of hyperplanes.

The elements of S are called supporting points.

Now let Z be a strong supporting system for the nonempty subset W of
X and let we W be an arbitrary, but fixed, supporting point. Then each
R e Z is of the form

R=R;={ye X:L(y)z L(W)} (3.3)
where L € .

The condition (2.2) is therefore equivalent to the following: For each
w e W there is an L € % such that

L(w) = L(W). (3.9)

The condition (2.3) is equivalent to
L(x) < L(®) (3.5)
for all L € . By Lemmas 2.1 and 2.2 the inequalities (3.4) and (3.5) imply
Ll:l; LW —x) = d(W). 3.6)

If we, furthermore, assume that % is a nonempty weakly* closed subset of S*,
hence weakly* compact, then (3.4) is equivalent to

min L(# — w) < 0 (3.7)
LeZ

for all w e W, and in (3.6) “inf” can be replaced by “min.”
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LemMa 3.2. Let % be a family of half spaces Ry, defined by (3.3), where
Le X, and ¥ is a nonempty weakly* closed subset of S*. Let E(X) be the
(nonempty [9)) set of extreme points of L, and % the family of all Ry € #
such that the corresponding L is an element of E(). If # is a strong supporting
system for a nonempty subset W of X then the same is true for Z.

Proof (as in [8]). Let w e W be an arbitrary supporting point. For each
we W we define a linear functional g, mapping & into the reals by
gLy =L(w—W) where L e %. As g, is weakly* continuous, g,{(Z) is 2
compact subset of the reals and, therefore, has an extreme point » = 0, since
A is a strong supporting system. It is well known [9] that r is the image of an
extrems point L, € E(¥). Hence, for each w € W, there exists an L, € E(¥)
such that L(w — #) = 0, which completes the proef.

Let x € X be a fixed point, and W a nonempty subset of X. ¥ € W is called
a projection point of x in W if

% — x| = d(W).
In the following, we assume d (W) > 0. For each we W we define 2 set:
E,={LeS*:L{iw—x)=Iw—x|}

By the Hahn-Banach Theorem, E,, is nonempty, and, furthermore, E,, is
obviously a weakly* closed (hence weakly* compact) convex subset of §*%.

THEOREM 3.3. For some % € W, let % be the family of half spaces R, defined
by (3.3), where Le &, and ¥ is a nonempty subset of E;. If # is a strong
supporting system for W, then W is a projection point of x in W.

Proof. By assumption, (3.4) and (3.5) are satisfied, the latter because of
Q<d(WYs|Ww—xl|=L(»—x) foraliL e . Z.
Hence (3.6) holds, implying
W —~x||= inf LW — x) £ d,{W¥}.
Lew

If % is a nonempty weakly* closed subset of E,,, then & is also weakiy*
closed in S*, and therefore the assumption of Theorem 3.3 is equivalent to
(3.7). By Lemma 3.2, the assumption of Theorem 3.3 remains true if we
replace & by the set E(%) of its extreme points.

For applications it is important to know whether, in this case, E(Z) is
contained in the set E(K¥) of extreme points of the unit ball K* of X'*, because
in various special cases, E(K¥) has a rather simple structure,

10
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The statement of Theorem 3.3 is not new. In [/3] Nikolskii considers the
case where & is the intersection of E; and a so-called fundamental system T,
which is a weakly* closed subset of K* such that for each y # 0 in X there
exists an L € I" with L(y)=|y|. Examples of fundamental systems are the
unit sphere S* and the closure of E(K*).

Nikolskii proves that W< |J R, is a sufficient condition for w € W to
LeE(&)

be a projection point of x in W, and a necessary condition in the case where
W is convex.

In [6] Garkavi obtains the same result as Nikolskii, with the only differences
that instead of E(%), the set E(E;) = E; N E(K*) of extreme points of E,
is considered and that X is a Banach space. Recently, Deutsch and Maserick
[3] reproved this result for a normed linear space X.

In [7], Havinson gives the same characterization for projection points in
convex sets as Garkavi. Furthermore, he obtains the following criterion which
is a simple consequence of Theorem 2.5: If W is a nonempty convex subset
of X, and x € X is such that d.(W) > 0, then % € W is a projection point of x
in W if and only if there exists an element L € S* such that L€ E,; and
LWy L(w) forallwe W.

However, as Deutsch and Maserick point out in [3], this L cannot, in general,
be chosen to be an element of E(K*).

Brosowski considers the case & = E,; NI, where I' is a fundamental
system, and studies the question: For what nonempty subsets ¥ of X other

than convex subsets is the condition W< [(J R, necessary for w to be a
LeE(®)
projection point of x in W? He states that the condition is necessary for

so-called I'-regular subsets of X. For details we refer to [11], where the results
are given without proofs. These are to appear in a forthcoming paper.

In [11] we have investigated the following situation which occurs in various
special cases: Let Y be a real normed linear space, 4 a nonempty open subset
of Y, and F: 4 — X a mapping such that for each a € 4 the Fréchet derivative
F, exists. For W we take the image F(4), and we consider an element x € X
such that

d (W)= inf ||F(a) — x| > 0.
acAd

We then obtain the following necessary condition for a projection point;
we assume that for every fixed /4 € Y the mapping a — F,'(h), a € A, is con-
tinuous. If F(d), d € 4, is a projection point of x in W, then for each he Y
there exists an L € Er( such that

L(F/(h) <0. (3.8)

This result has also been given by Henze in [8], however, without the above
continuity assumption on the mappings a — F,;'(4). But this is indispensable.
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If we define for each a € A4 the linear manifold
T,={F(a)— F/(hy:he Y}
and consider the family # of all half spaces
Ry ={ye X:L(y) 2 L(F(@))}, LeEgg),

then condition (3.8) is equivalent to # being a strong supporting system for
T3, with F(4) as supporting point.

Furthermore, Henze shows in [8] that condition (3.8) remains true if we
take the set E(Er;)) of extreme points of E;,instead of Ex ;). This is also an

immediate consequence of Lemma 3.2.
In order to prove that condition (3.8) with E(E.;,) instead of Ep,, i

(7]

b

sufficient for F(4) to be a projection point of x in F(4), we assumed in [17]
that F has the following property: For each pair (a,b)e 4 x 4, there is &
positive continuous functional ¢, ,: E(K*) — Rand anelementh = A(a,b) e ¥
such that

L(F(a) — F(b)) = ¢a, (L) LIE, (7). (33

In the case of the Chebychev approximation problem {compare Section 4}
this property is essentially equivalent to the asymptotic convexity of F intro-
duced by Meinardus and Schwedt in [12]. This was shown in [10]. We therefore
call Fasymptotically convex if it has the property (3.9).

Under the assumptions that F is asymptoticaily convex and that for each
fixed 2 € Y the mapping a — F,;'(#), a € 4, is continuous, we have shown in
i/ ] that for F(d), d € A, to be a projection point of x in W = F(4), the follow-
ing condition is necessary: For each g € 4 there is an L € E(Ey;;) such that

L(F(a) > L(F(&)). (3.10)

Finally, we give a somewhat negative result which is aiso contained in [/7%.
We assume X to be flat convex [9], that is, at each point of the unit sphere
of X there is exactly one supporting hyperplane of the unit ball. Examples of
flat convex normed linear spaces are Hilbert spaces and L,-spaces with
I <p<ow,

If, furthermore, F: A —> X is asymptotically convex, if for each fixed ie ¥
the mapping a — F,'(h), a € A, is continuous, and if for each x € X there exists
a projection point in W= F(4), then W is a linear manifold.

4, SpECIAL CASES AND EXAMPLES

We start with an algebraic version of Lemma 2.2. Let X be a real normed
linear space, X* its dual, and % a nonempty subset of the unit sphere $* of
X*, To each L € % we assign a real number o;. Then we have the following:
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Let W be a nonempty subset of X, and let x be an arbitrary point of X.
If for each w € W there is an L € % such that

Lw) = oy, “.1)
then
in; {or — L(x)} < du(W). 4.2)
Le
If L(X) = «; for some L € &, the assertion (4.2) is trivial. We therefore assume
L(x) < o forall L € &. 4.3)
We put for each Le &
R, ={ye X:L(y) > o} (4.4
and define
R={R,:Le ).

Then (4.1) and (4.3) are equivalent to (2.2) and (2.3), thus implying (4.2) by
Lemmas 2.1 and 2.2.

Now we consider special cases.

(a) Uniform approximation: Let X be the vector space C(M) of real valued
continuous functions defined on a compact Hausdorff space M. The norm in
X = C(M) will be the maximum norm

gl = max|g(P)|, geC(M).
PeM

Let W be a nonempty subset of C(M) and let fbe a point of C(M) not belong-
ing to the closure of #¥.

The problem of finding projection points w € W of fin W is the well-known
nonlinear Chebychev approximation problem.

For X = C(M), the set of extreme points E(K*) of the unit ball K* of X*,
is given by

E(K*)={epdp:Pe M,ep=+1 or -1},
where 6, is the point measure in P, i.e.,
Sp(g)=g(P) for all g € C(M).

Let D be a nonempty subset of M. To each Pe D we assign a number
ep € {—1,+1} and define & by

F ={epdp:PE D}. 4.5)
A family #Z of half spaces R; of the form (4.4) with L € % is then given by
X ={Rp:Pc D} (4.6)

where
Rp={g e C(M):epg(P) = op} .7

and o is a real scalar assigned to P.
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Collatz [2] calls D an H-set if D is the disjoint union of two nonempiy sels
D, and D, such that for no pair w, W € Wit is true that

N <0 forallPe D; o
w(P) — (P ){>0 forall Pe D,. @8

Assume D to be an H-set and consider an arbitrary but fixed #w € W. Then
(4.8) implies that for each w € W there is a P € D with

ep(w(p) —W(P)) 20
where
B I +1 forPe D,

°*7\-1 forPeD,.

Defining cp = epW(P), P € D, and # by (4.6), (4.7), we get the result that
2 is a strong supporting system for w with ¥ as supporting point.
Besides (4.8), we assume that for some fixed w € ¥, we have

eo(W(P) —f(P) >0 for all P< D.
Then it follows that
inf [W(P) —f(P)| < dW).

PeD

This is the contents of Theorem 2 of [2] and a special case of the fact that
{3.4) and (3.5) imply (3.6). In [2], Collatz gives various examples of H-sets
and develops a method by which H-sets can be systematically constructed for
certain subsets W of C(M).

Let M be a finite closed interval [a,b]. Then, for example, in the case of
rational or exponential approximation, W has the following property: There
is a number r such that no difference w — w of functions w,w € ¥ has more
than r zeros in [, b]. In this case, obviously, each set of » + 2 points P; € [g, 5],
witha < P; <...<P.,<b,is an H-set.

Now we consider the following situation: Let ¥ be a normed linear space
and A a nonempty subset of Y. Let F: 4 — C(M) be a given map, and put
W = F(A). We require D to be a nonempty closed subset of M and assume
that for some d ¢ 4 the following two conditions are satisfied:

min (F(d,P)—f(PY)(F(4,P)— F(a,P)) <0

PeD

forallae 4, and
|F(@,P)—f(P)|>0  forallPeD.

We define ¢p = sgn(F(4,P) — f(P)), where Pe D, and & by (4.5). Then
(3.4) and (3.5) are satisfied, implying (3.6) with “min” instead of “inf”, since
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Z is a weakly* closed subset of K* and hence weakly* compact. (3.6), in
turn, is equivalent to
min [F(4, P) —f(P)| < d(W).
PecD
This is exactly Theorem 1 of [12], for the case of real valued functions.
In [10] we considered the case where Y is the real euclidean space R” and 4

is a nonempty open subset of Y. If F is Fréchet-differentiable, then for each
Pe Mand a=(a,,...,a,) € 4, there exist the partial derivatives

oF .
5a—j(a,P), j=1,...,n,

and we have
vy & OF
F/'(h) = 2.1 h; %, (a),

where k= (h;,....,h,) € Y ="R"

We have shown in [/0] that for each fixed 4 € Y, the mapping a - F,'(%),
a € A, is continuous if and only if the partial derivatives depend continuously
on(a,P)e A x M.

Condition (3.9) immediately leads to the following property of F (compare
condition (5) in [10]): For each pair (a,b) € A x A, there is a positive function
¢(a,b) € C(M) and an element /2 = h(a,b) € " such that

F(a)— F(b) = é(a, b) é h, 3—5 (.

As to the relationship with the asymptotic convexity of F, introduced by
Meinardus and Schwedt in [/2], and the discussion of further special cases,

we refer to [10].
(b) Discrete L,-approximation: Let X be the m-dimensional space R™

with norms
m 1/p
Ivll, = (Zl IJ’,-I")
for1 <p<w,and

”J’”m = ‘_fnax Iyi]7

13

where y =(¥,..., Ym) € R™
X* can be identified with R™, and each element L € X'* is given by

uw=@w=énn 4.9)
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where [ = (I,,...,1,) € R" is uniquely defined by L. The norm of X* is given by
ILI = sup |L(p)| = l]l,,
fivllp=1

where (I/py+(l/g)=1for l<p< o, g=1if p=c, and g=o if p=1.
In order to apply Lemma 2.2, we consider a nonempty subset W< R™,
an element x € R™, and a nonempty subset & of

S,={leR™:llj, =1}

To each [ € & we assign a real number o, and define L € X* by (4.9). Then
LeS* and (4.1) is equivalent to the following statement: For each we W,
there is an ! € .# such that

Lwy 2oy, {4.10)
By (4.2), we then have

inf {o — <, x>} < dF(W) = inf ||w— x|,
leZ wew

A very simple way of realizing (4.10) is the following: Let . consist of
vectors of the form /' = ¢;¢’, where €' = (e,%,...,e,'), e/, =§;;, and ¢, = +1 or
—1. Then, obviously, ||[I!]l, =1 for every ¢, 1 <7 < «. Putting o; = o, we can
express condition (4.10) by

lmin fo—ew}<0 4.1
for all w = (wy,...,w,) € W.

Finally, we demonstrate in the case of rational approximation, how (4.11)
can be realized:

Let U and V be subspaces of X = R™, spanned by «°,...,4" and °,...
respectively, where r + 5 + 2 < m. We assume

5L‘Sﬂ
Vt={eV>0,i=1,..,m}

to be nonempty, and put

AY
i

w=1%ue Uve V*}.
v

{4.11) is equivalent to the following statement: There is no wvector
(g, ..., 5,...,b5) € K512 such that
g

Nea

k=0

i

P

K 1

o v by — _ZO ula;>0
j=

fori=1,...,m.

M

v by >0

k=0
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By Theorem 2.9 of [4], this is equivalent to the existence of a vector
(yb s Yms Plsevos pm) € iRZm such that

y;=0 and p: =0, i=1,...,m,

> v¥ayi4+ 2 vFp =0, k=0,...,s,
i=1 i=1
4.12)
m s
> ud ey =0, j=0,...,F.
=1

J

We put ¢; =—¢; y; and X; = «; — €;x;, for i = 1,...,m. Then (4.11) is equivalent
to the existence of vectors (c,,...,c,) and (py,..., p,,) of R such that

p: =0 fori=1,...,m, |
%uijci=0, j=0,...,r,
=1 - (4.13)
> vFxiei= 2 vfAle| + po), k=0,...,s.
i=1 i=1

J

Since V' is assumed to be nonempty, it can easily be shown that not all ¢,
can vanish. If (4.13) is satisfied, we have by the definition of the A;’s,

min A; < dFA(W).

i=l,...,m

Under the natural assumption that the matrix

u’
v*x;

has the rank r + s + 2, it is easy to satisfy (4.13). One merely has to choose
z;20,i=1,...,m, and compute a nontrivial solution (cy,...,c,) of

m
_zluilcizo, j=0,...,r,
i

m m

k — k —
21 v; x,-ci~_zl vz, k=0,...,s,
i< =

which is always possible if not all the z; vanish. We define

L if ¢; #0,
Y — [ei]
max L ife; =0,

Lei#o lcii
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and

0 if¢; 20,

Pi=\z,  ife,=0.

Then (4.13) is satisfied, and we have

10.

11.

12,

13,

-
min— < d.2(W).
ciFo lci!
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